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Purpose. The aim was to evaluate fluorescent molecular rotors (DCVJ and CCVJ), which are mainly
sensitive to viscosity, for the characterization of polysorbate-containing IgG formulations and compare
them to the polarity-sensitive dyes ANS, Bis-ANS and Nile Red.
Methods. IgG formulations with polysorbate 20 or 80 were stressed below the aggregation temperature
and analyzed by steady-state and time-resolved fluorescence and by HP-SEC with UV and fluorescent
dye detection (Bis-ANS and CCVJ). Furthermore, commercial protein preparations of therapeutic
proteins (Enbrel®50 mg, Humira®40 mg and MabThera®100 mg) were aggregated accordingly and
analyzed with CCVJ fluorescence and HP-SEC.
Results. Contrarily to (Bis-)ANS and Nile Red, the molecular rotors DCVJ and CCVJ showed low
background fluorescence in polysorbate-containing buffers. Time-resolved fluorescence experiments
confirmed the steady-state fluorescence data. Both DCVJ and CCVJ showed enhanced fluorescence
intensity for aggregated IgG formulations and were suitable for the characterization of polysorbate-
containing IgG formulations in steady-state fluorescence and HP-SEC with dye detection (CCVJ). CCVJ
was capable of detecting thermally induced aggregation in the commercial polysorbate-containing
products Enbrel®50 mg, Humira®40 mg and MabThera®100 mg.
Conclusion. Fluorescent molecular rotors are suitable probes to detect aggregation in polysorbate-
containing IgG formulations.

KEY WORDS: aggregation; fluorescence; fluorescent molecular rotors; monoclonal antibodies;
size-exclusion chromatography.

INTRODUCTION

Surfactants like polysorbate 20 and 80, also known as
Tween® 20 or 80, are commonly used excipients in formula-
tions of therapeutic proteins. The main function of the
amphiphilic polysorbates is to prevent protein adsorption at
liquid-liquid, liquid-solid or liquid-air interfaces, which can
lead to surface-induced denaturation and aggregation (1). A
protective effect of polysorbates on protein stability has been
shown during freeze-thawing (2), freeze-drying (3), mechan-
ical stress (e.g. agitation, shaking or stirring (2,4,5)), and
reconstitution of dried protein preparations (6), as well as for
formulations containing silicone oil droplets (5). However,
polysorbates can also negatively affect stability, e.g. at
quiescent conditions during long-term stability (7). Further-
more, polysorbates can undergo various degradation reac-

tions, which can lead to a loss of its stabilizing properties and
chemical modifications of proteins, such as oxidation (8).

Almost 70% of the marketed monoclonal antibody
formulations contain polysorbate 20 or polysorbate 80 as
stabilizing excipients (9,10). Within those commercial prepa-
rations, the polysorbate concentrations range between 0.001%
(w/v) polysorbate 80 (Reopro®) (11) and 0.16% (w/v) poly-
sorbate 20 (Raptiva®) (12), with most formulations containing
about 0.005 to 0.02% polysorbate 20 or 80. One difference
between the polysorbates is the lower critical micelle concen-
tration of polysorbate 80 (ca. 0.0017% (w/v)) compared to
polysorbate 20 (ca. 0.007% (w/v)) (8).

Polarity-responsive extrinsic fluorescent dyes, like Bis-
ANS, ANS or Nile Red, can enable the sensitive detection of
aggregated and structurally changed protein molecules (13),
which can be particularly useful during formulation screening
(14). Aggregates composed of structurally perturbed mono-
mers are more prone to interact with those dyes, than
aggregates composed of native-like monomers (15). The
underlying aggregation mechanism and aggregate properties,
like size, can play a role as well (16), as they are often related
to changes in polarity. In previous papers, we demonstrated
that fluorescent dyes, above all Bis-ANS, are highly sensitive
to detect heat-induced aggregation in IgG formulations, both
in steady-state fluorescence spectroscopy and as dye detec-
tion in size-exclusion chromatography (HP-SEC) (15,17).
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From an analytical perspective, it needs to be considered that
polysorbates will most likely interfere with this approach, as
the fluorescent properties of dyes like (Bis-)ANS or Nile Red
are highly sensitive to the polarity of the environment (13).
Therefore, the use of these polarity-sensitive dyes can be
rendered impractical in the presence of polysorbates, as dye-
surfactant interactions will lead to high background fluores-
cence. In fact, the interaction of polarity-sensitive fluorescent
dyes with surfactants is utilized to determine surfactant
content and critical micelle concentration (18–21).

Unlike Bis-ANS, ANS and Nile Red, the fluorescent
properties of fluorescent molecular rotors, such as DCVJ and
CCVJ, are mainly sensitive to changes in the viscosity of the
environment and less to polarity (22–24). Based on this,
molecular rotors have been used for non-mechanical determi-
nation of fluid viscosity (25). Publications on applications of
fluorescent molecular rotors in the field of protein aggregate
characterization are rare compared to the polarity-sensitive
dyes (Bis-)ANS and Nile Red, and are so far limited to
polysorbate-free formulations (15,16,23).

The aim of this study was to evaluate the ability of the
fluorescent molecular rotors DCVJ and CCVJ to detect
aggregation in polysorbate-containing IgG formulations, in
comparison with the polarity-sensitive dyes ANS, Bis-ANS and
Nile Red. We demonstrate that DCVJ and CCVJ are well-
suited to identify protein aggregates in thermally stressed
polysorbate-containing IgG formulations by using steady-state
fluorescence spectroscopy and HP-SEC with fluorescent dye
detection. Furthermore, the suitability of CCVJ to detect
aggregation in stressed commercial products with high protein
concentrations and high polysorbate concentration is shown.

MATERIALS AND METHODS

Materials

A recombinant humanized monoclonal antibody of the
IgG1 subclass (IgG) with a molecular weight of 149 kDa, an
isoelectric region between 9 and 10 and an aggregation
temperature (Tagg=the onset of aggregation monitored by
the optical density at 350 nm during a thermal scan) of about
81°C (17) was used for the study. The IgG was formulated at
a concentration of 1.0 mg/ml in 100 mM sodium phosphate
buffer pH 7.2 without or with different concentrations of
polysorbate 20 and polysorbate 80 (Fluka, Sigma-Aldrich,
Buchs Switzerland). The formulations were filtered using 0.22
µm PES low binding syringe driven filter units (MillexTM GP,
Millipore, Ireland). Sucrose, mannitol, sodium citrate, sodium
citrate dehydrate and citric acid monohydrate were from
Fluka (Fluka, Sigma-Aldrich Steinheim, Germany), glycerol
from Merck (Merck KGaA, Darmstadt, Germany), arginine
hydrochloride from SAFC (SAFC, Sigma-Aldrich Steinheim,
Germany), ethanol and methanol from Biosolve (Biosolve B.
V., Valkenswaard, The Netherlands), NaH2PO4 dihydrate,
Na2HPO4 dihydrate and NaCl were from Sigma (Sigma,
Sigma-Aldrich Steinheim, Germany).

4,4´-Dianilino-1,1´-binaphthyl-5,5´-disulfonic acid dipotas-
sium salt, Bis-ANS, 8-anilino-1-naphthalenesulfonic acid,
ANS, 9-(2-carboxy-2-cyanovinyl)julolidine, CCVJ (Sigma,
Sigma-Aldrich Steinheim, Germany), 9-(2,2-dicyanovinyl)
julolidine, DCVJ and Nile Red (Fluka, Sigma-Aldrich, Buchs

Switzerland) were used. Stock solutions of the dyes were
prepared in 99.9% ethanol (Biosolve B.V., Valkenswaard, The
Netherlands). The dye content was determined by UV
spectroscopy after dilution with deionized water (ANS, Bis-
ANS, and CCVJ), ethanol (DCVJ), or DMSO (Nile Red) to an
absorbance between 0.1 and 1.0 at the absorption maximum of
the respective dye.

Commercial products Humira®40 mg (Expiry date 05-
2010, lot nr. 66781VA), Enbrel®50 mg (Expiry date 03-2010, lot
nr. 35561) and MabThera®100 mg (Expiry date 08-2011, lot nr.
H0012) were obtained from local hospitals. Enbrel®50 mg
contains 50 mg/ml etanercept and is polysorbate-free,
MabThera®100 mg contains 10 mg/ml rituximab and 0.07%
(w/v) polysorbate 80 and Humira®40 mg contains 50 mg/ml
adalimumab and 0.1% (w/v) polysorbate 80.

Stressing of IgG Formulations to Induce Aggregation

Formulations with 1.0 mg/ml IgG in 100 mM phosphate,
pH 7.2 without polysorbate and with different concentrations
of polysorbate 20 and 80 (see “Results” section) were
prepared. To induce aggregation, 1.5 ml of the formulation
were stressed for 10 minutes at 75°C or 80°C in 1.5-ml reaction
tubes (Eppendorf, Hamburg, Germany) using a thermomixer
(Eppendorf, Hamburg, Germany). Both temperatures were
below the aggregation temperature of the IgG, and no
precipitation was observed after the thermal treatment.

Stressing of Commercial Products to Induce Aggregation

Enbrel®50 mg was stressed for 10 min at 70°C,
Humira®40 mg for 10 min at 60°C and 65°C, and
MabThera®100 mg for 10 min at 60°C, 65°C and 70°C. For
each condition, 800μl of the commercial product was filled in
1.5-ml reaction tubes (Eppendorf, Hamburg, Germany) and
incubated at above-mentioned conditions using a thermomixer
(Eppendorf, Hamburg, Germany). All formulations were
optically clear after the thermal treatment, and no precipitation
was observed. The formulations were allowed to cool down to
room temperature and subsequently analyzed by HP-SEC and
steady-state fluorescence spectroscopy using CCVJ.

The corresponding placebos contained 10 mg/ml sucrose,
5.8 mg/ml NaCl, 5.3 mg/ml arginine*HCl and 3.9 mg/ml
Na2HPO4*2H20 (pH 6.3) for Enbrel®50 mg (26), 6.2 mg/ml
NaCl, 1.52 mg/ml Na2HPO4*2H20, 0.3 mg/ml sodium citrate,
1.3 mg/ml citric acid monohydrate, 12.0 mg/ml mannitol and
1.0 mg/ml polysorbate 80 (pH 5.2) for Humira®40 mg (27) and
9mg/ml NaCl, 7.3mg/ml sodium citrate dehydrate and 0.7mg/ml
polysorbate 80 (pH 6.5) for MabThera®100 mg (28).

UVAbsorption Spectroscopy

An Agilent 8453 UV–Vis spectrometer (Agilent, Wald-
bronn, Germany) was used to determine the IgG content in
the formulations using an extinction coefficient of 1.49 for a
1.0 mg/ml solution for the absorption at 280 nm. Samples of
1.0 ml were measured in half-micro quartz cuvettes (Hellma,
Kruibeke, Belgium) with a path length of 10 mm. For IgG
formulations, the UV absorbance was recorded from 240 nm
to 360 nm using an integration time of 15 s and steps of 1 nm.
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To determine the concentration of the dye stock solution,
the following molar extinction coefficients were used: ANS
(4,900 M−1cm−1 at 350 nm in water), Bis-ANS (16,790 M−1

cm−1 at 385 nm in water) (29), Nile Red (19,600 M−1cm−1 at
552 nm in DMSO) (30), DCVJ (65,900 M−1cm−1 at 453 nm
in ethanol) (23) and CCVJ (25,404 M−1cm−1 at 440 nm in
water) (25). The spectra were recorded from 240 to 600 nm
using an integration time of 5 s and steps of 1 nm. All
spectra were corrected for the absorbance of the particular
solvent.

Steady-State Fluorescence Spectroscopy

A Tecan Infinite M1000 platereader (Tecan Benelux
BVBA, Giessen, The Netherlands) was used to record the
emission spectra of the extrinsic fluorescent dyes by top
reading in black polypropylene 96-well plates (Greiner Bio-
One B.V., Alphen a/d Rijn, The Netherlands). 5µl of a
100µM dye stock solution was added to 95µl protein solution
to achieve a dye concentration of 5µM, which is suitable for
all the selected fluorescent dyes. 100µl of the IgG/dye
mixture per well (n=3) were measured within 30 min after
dye addition. Preliminary studies had shown that there were
no significant changes in fluorescence intensity and emission
maximum for about 2 h.

ANS was excited at 350 nm (emission scanned from: 370
to 650 nm), Bis-ANS at 385 nm (emission: 400 to 650 nm),
CCVJ at 435 nm (emission: 450 to 650 nm, DCVJ at 452 nm
(emission: 470 to 650 nm) and Nile Red at 550 nm (emission:
570 to 700 nm). The fluorescence measurements were
performed with slits of 5 nm, steps of 2 nm and flashes of
4.8 Joule. Under these experimental settings, no inner filter
effect and no disturbance by scattered excitation light was
observed. By subtracting the background spectra of the
respective dye-free controls from the emission spectra of the
dye-containing samples, the contribution of light scattering at
the solvent manifested as Raman peak was removed from the
spectra.

Time-Resolved Fluorescence

Time-resolved fluorescence measurements were per-
formed on a LifeSpec-ps fluorimeter (Edinburgh Instruments
Ltd., Livingston, UK) with a PMT detector module. As
excitation source, PDL 800-B picosecond pulsed diode lasers
(Picoquant, Berling, Germany) operating at a frequency of
10 MHz of 375 nm (Bis-ANS) and 450 nm (DCVJ) were used.
On the emission side, a cut-on filter of 495 nm was used for
both dyes. The temperature was kept constant at 25°C.
Samples (900µl) were measured in half-micro quartz fluo-
rescence cuvettes (Hellma, Kruibeke, Belgium). The fluores-
cence decays were measured over 100 ns for Bis-ANS and
50 ns for DCVJ up to a peak count of 10,000 using 2,048
channels. The dynamic instrumental response function (IRF)
was recorded bymeasuring the ‘decay’ of a diluted LUDOXTM

LS colloidal silica solution in water. To deconvolute the IRF
and to fit the intensity decay, the FAST software package
(Edinburgh Instruments Ltd., Livingston, UK) was used.
Calculations therein are based on a combination of global
least square analysis minimization and non-negative singular
value decomposition. Depending on the resulting decays,

between 1 and 4 exponentials (i.e., discrete lifetimes) were
required for a suitable fit of the data. The goodness of fit was
evaluated by the reduced Chi2 criterion and the residuals of the
fit. The average lifetime was calculated as:

average lifetime ¼
Xn

n¼1

taun*
fn
100

: ð1Þ

where tau is a discrete lifetime component, n is the
number of lifetime components, and fn is the fractional
contribution (in %) of lifetime n.

HP-SEC

Size exclusion chromatography was performed using a
TSKgel4000SWXL column (TosohBiosep, Stuttgart, Germany)
on an isocratic HPLC system with a Waters 515 pump, a Waters
717 plus autosampler, a Waters 474 fluorescence detector
(Waters, Milford Massachusetts, USA) and a Shimadzu SPD
UV/Vis detector (Shimadzu, Tokyo, Japan) at a flow rate of
0.5 ml/min. For the standard IgG formulations of 1.0 mg/ml 50μl
sample was injected. For the commercial products, 5μl were
injected for Enbrel®50 mg and Humira®40 mg and 10μl for
MabThera®100 mg.

The mobile phase was composed of 50 mM sodium
phosphate, 150 mM arginine and 0.025% NaN3, pH 7.0. To
quantify aggregation in the IgG formulations, UVabsorption at
280 nmwas used. For fluorescence dye detection 5µMCCVJ or
2.5µM Bis-ANS were added to the mobile phase. CCVJ
fluorescence was detected using excitation at 435 nm (band-
width 18 nm) and monitoring emission at 500 nm (bandwidth
18 nm). For Bis-ANS excitation was at 385 nm (bandwidth
18 nm) and emission at 485 nm (bandwidth 40 nm).

RESULTS AND DISCUSSION

Impact of Polarity and Viscosity on Dye Fluorescence

In order to identify suitable dyes for the analysis of
polysorbate-containing formulations, a number of dyes were
compared for their sensitivity to polarity and viscosity. To do
so, the fluorescence emission of the dyes was measured in
100 mM phosphate pH 7.2 (dielectric constant ε=80.1,
viscosity at 20°C η =1 mPa s), 10% (w/v) sucrose (ε=80.1,
η =1.2 mPa s), ethanol (ε=25, η =1.2 mPa s), methanol (ε=
33.6, η =0.59 mPa s) and glycerol (ε=42.5, η =945 mPa s)
(Fig. 1). A considerable intensity increase combined with a
blue shift of at most 32 nm was measured for Bis-ANS in
ethanol and methanol. In glycerol, Bis-ANS fluorescence
intensity did not increase as much, and the blue shift was only
10 nm. DCVJ and CCVJ exhibited significantly higher
fluorescence intensities in glycerol, but unchanged (CCVJ)
or slightly increased (DCVJ) intensities in ethanol and
methanol. The blue shift in organic solvents was higher than
the one in glycerol.

The fluorescence of Bis-ANS (as well as similar dyes like
ANS and Nile Red—results not shown) is mainly responsive
to changes in polarity. This is evident from the inverse
correlation of the intensity increase and blue shift of Bis-
ANS fluorescence with the dielectric constant, obvious for the
aqueous solutions (dielectric constant ε=80.1), glycerol (ε=
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42.5), methanol (ε=33.6) and ethanol (ε=25). This increase in
quantum yield and blue shift of the emission maximum can be
ascribed to the inhibition of the essentially non-fluorescent
twisted intramolecular charge transfer (TICT) state in non-
polar environments (13,31,32). Molecular rotors, like DCVJ
and CCVJ are less sensitive to polarity with respect to
changes in quantum yield; however, the position of the
emission maximum remains sensitive to polarity, as obvious

from the blue shift of DCVJ and CCVJ in methanol and
ethanol (Fig. 1A,B).

Molecular rotors mainly experience an increase in quan-
tum yield when present in highly viscous environments like
glycerol (η =945 mPa s at 20°C, as compared to 1 mPa s for
water) (22–24), as described in detail by Haidekker et al., 2005
(22). This can be explained by a charge transfer excited singlet
state, which rapidly decays in a non-radiative way through
internal rotation around a donor acceptor bond (Fig. 2). When
this internal rotation is hindered, e.g. due to an increase in
viscosity or sterical constraints when the dye is bound to
protein aggregates, the radiative decay of the excited state is
favored, and an increase in quantum yield is obtained (22,23).

One concern in using fluorescent molecular rotors for
formulation screening might be an interference of excipients
that affect the viscosity of the formulations. This is particularly
relevant for sugars, like sucrose of trehalose, which are
typically added in concentrations between 2 and 10% (w/v)
to the formulations, where, e.g., a viscosity of 1.17 cP is found
for 10% (w/v) sucrose at 25°C (33). The fluorescence
intensities of CCVJ and DCVJ were slightly increasing for a
10% (w/v) sucrose solution (Fig. 1A,B), whereas Bis-ANS
fluorescence was not affected by the addition of sucrose
(Fig. 1C). However, no disturbance by sucrose is expected in
the concentration range generally used within protein for-
mulations, as the increase in fluorescence is minor compared to
the increase expected for stressed protein material. Nonethe-
less, when using fluorescent dyes for formulation screening, it
is of great importance to perform a background correction for
the fluorescence of the particular placebo when comparing
formulations with different types and amounts of excipients.

Essentially, the low sensitivity of their quantum yield to
polarity changesmakesDCVJ andCCVJ ideal candidates for the
characterization of proteins in polysorbate-containing formula-
tions. Therefore, in the following sections, we will focus on
molecular rotors for the characterization of polysorbate-contain-
ing formulations and compare them to the polarity-sensitive dyes
(Bis-)ANS and Nile Red. Steady-state and time-resolved fluo-
rescence experiments were done for both polysorbate 20 and
polysorbate 80. To avoid redundancies, only the results obtained
with polysorbate 20-containing formulations will be shown, as the
results obtained with polysorbate 80 were very similar.

Steady-State Fluorescence of Dyes in IgG Formulations
Spiked with Polysorbate 20

A formulation with 1.0 mg/ml IgG in 100 mM phosphate
pH 7.2 (non-stressed, NS, and stressed for 10 min at 80°C,

Fig. 1. Representative steady-state fluorescence spectra of 5µM
DCVJ (A), 5μM CCVJ (B) and 5μM Bis-ANS (C) in 100 mM
phosphate pH 7.2 (buffer), 10% (w/v) sucrose, methanol, ethanol and
glycerol.

Fig. 2. Structure of molecular rotors DCVJ (A) and CCVJ (B). The
arrow marks the bond where internal rotation in the excited state
takes place.
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HT), as well as the corresponding formulation placebo, were
spiked with polysorbate 20 to final concentrations between 0
and 0.1% (w/v). Aggregates created by the thermal stress
interact with non-covalent extrinsic dyes, resulting in an
increase in fluorescence intensity, as described in detail in
our previous publications (15,17). The rationale behind
spiking with polysorbate after the application of thermal
stress was to obtain comparable levels and types of aggre-
gates in the formulations but varying the polysorbate 20
concentration. Analysis of the spiked IgG preparations
confirmed that the addition of polysorbate 20 did not alter
the properties of the samples with respect to Z-average and
polydispersity index in dynamic light scattering, as well as
aggregate content and relative recovery in HP-SEC in the
time frame of the experiment (data not shown).

The polysorbate 20-spiked samples were analyzed by
steady-state fluorescence spectroscopy after the addition of
5μM DCVJ, CCVJ, Bis-ANS or Nile Red (Fig. 3). Compa-
rable spectra with respect to emission maximum and intensity

were obtained for the dyes when added to placebo and the
corresponding non-stressed IgG preparation, pointing at
negligible interactions of the dyes with non-stressed IgG.
Heat-stressed placebos showed similar dye fluorescence as
non-stressed placebos (results not shown).

With rising polysorbate 20 concentrations in placebo and
non-stressed IgG, Bis-ANS and Nile Red fluorescence
intensity (Fig. 3C,D) was increasing much steeper than DCVJ
fluorescence (Fig. 3A), whereas a slight decline was moni-
tored in CCVJ fluorescence intensity (Fig. 3B). The high
fluorescence signal of Bis-ANS and Nile Red in the presence
of polysorbate 20 impeded a feasible detection of changes in
the heat-stressed IgG formulation, already at polysorbate 20
concentrations of 0.01 to 0.05%, like typically used for
protein formulations. DCVJ and CCVJ were capable of
detecting heat-induced changes in formulations without and
with polysorbate 20, obvious by the notably higher fluores-
cence intensity for the stressed formulation as compared to
the equivalent non-stressed IgG formulation (Fig. 3A,B).

Fig. 3. Average maximum fluorescence intensity of 5µM DCVJ (A), 5µM CCVJ (B), 5µM Bis-ANS (C) and 5µM Nile Red (D) for placebo,
non-stressed IgG (NS) and 10 min 80°C heat-stressed IgG (HT) spiked with 0 to 0.1% polysorbate 20 (PS20). Error bars represent standard
deviations of 3 independent experiments.
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Even at the highest tested polysorbate 20 concentration of
0.1%, the fluorescence intensity for the heat-stressed for-
mulations was clearly higher than for the corresponding
placebo and non-stressed formulation.

Additionally, a decline of the fluorescence intensity for
the heat-stressed formulations with increasing polysorbate 20
concentrations can be observed for CCVJ (Fig. 3B) and even
more for DCVJ (Fig. 3A). For all dyes, a balance between
free dye, dye interacting with stressed protein, and addition-
ally for polysorbate-containing formulations dye interacting
with polysorbate can be assumed:

free dye $ dye� stressed protien ð2Þ

dye� polysorbate $ free dye $ dye� stressed protein ð3Þ

For a polysorbate-free heat-stressed formulation (Eq. 2),
the increase in fluorescence intensity of the dyes can be
attributed to their interaction with structurally altered,
aggregated protein. The interaction of the dyes with poly-
sorbate 20 is obvious from the increased fluorescence
intensity of Bis-ANS, DCVJ and Nile Red when higher
polysorbate 20 concentrations are present in the placebo
(Fig. 3A, C, D). For CCVJ (Fig. 3B) an intensity increase was
only observed at even higher polysorbate concentrations of
about 0.5% (data not shown), which is far above the CMC.
When increasing the polysorbate concentration in heat-
stressed IgG formulations, it can be expected that overall
less dye molecules will interact with stressed protein, because
the polysorbate will progressively compete with the protein
aggregates for interaction with the dye molecules (Eq. 3). In
the case of Bis-ANS and Nile Red, the dye-polysorbate
interaction results in high fluorescence (obvious from the dye
added to placebo), and the overall signal remains therefore
high. In the case of DCVJ and CCVJ, the dye-polysorbate
interaction leads to a lower fluorescence as compared to dye-
stressed protein interaction, which can explain the overall
decrease of the fluorescence intensity for the polysorbate-
containing heat-stressed IgG formulations.

Time-Resolved Fluorescence Measurements

To gain deeper insight into the underlying photo-physical
behavior of the dyes upon interaction with protein and
polysorbate, fluorescence lifetime measurements were per-
formed for DCVJ and Bis-ANS. The average lifetimes are
shown Table I, whereas the fluorescence decays, as well as
detailed results and description of the data fitting are found in
the “Supplementary Material.” As shown in Table I, the
average lifetimes of DCVJ were short, which is in agreement
with the literature (16). Slightly shorter average lifetimes
were found for the polysorbate 20-containing formulations, as
compared to those without polysorbate, which confirms the
observation of lower fluorescence intensity at higher poly-
sorbate 20 concentrations in steady-state fluorescence
(Fig. 3B).

The fluorescence decays of Bis-ANS were clearly more
influenced by polysorbate 20. Longer average lifetimes of
about 5.6 ns were determined for Bis-ANS added to
polysorbate 20-containing placebo and non-stressed IgG,

compared to Bis-ANS added to polysorbate-free placebo
(0.49 ns) or non-stressed IgG (1.49 ns). For the interaction of
Bis-ANS with polysorbate, a characteristic lifetime of about
5.5 ns could be identified, which was also dominating the
decays of the polysorbate 20-containing IgG formulations.
For Bis-ANS interacting with heat-stressed IgG, two charac-
teristic lifetimes, one at about 6 ns and a longer component
>10 ns, were measured (see “Supplementary Material”).
Whereas the lifetime of 6 ns found for heat-stressed
polysorbate-containing IgG formulations can be attributed
to a combination of Bis-ANS interacting with polysorbate and
with stressed IgG, the longer lifetime of >10 ns is specifically
related to the interaction of Bis-ANS with heat-stressed IgG.

Time-resolved fluorescence confirmed the results from
steady-state fluorescence and was particular useful to distin-
guish between Bis-ANS interacting with polysorbate and with
heat-stressed IgG.

Detecting Aggregates in Polysorbate-Containing
Formulations with DCVJ, CCVJ and Bis-ANS

From the spiking experiments, it was obvious that DCVJ
and CCVJ are capable of detecting aggregates in the presence
of polysorbates. To be more in step with actual formulation
work practice, we evaluated the advantage of DCVJ and
CCVJ over polarity-sensitive dyes ANS, Bis-ANS and Nile
Red for the characterization of formulations that contain
polysorbate already during the stress testing. For this experi-
ment, 1.0 mg/ml IgG was formulated in 100 mM phosphate
pH 7.2 without and with 0.02% polysorbate 20 or 80 and
heat-stressed for 10 min at 75°C and 80°C. Fig. 4 shows the
fluorescence emission spectra for DCVJ, CCVJ and Bis-ANS
added at a concentration of 5µM to IgG formulations without
and with 0.02% polysorbate 20. For the polysorbate-free
formulations, an increase in fluorescence intensity combined
with a blue shift of less than 20 nm was measured for DCVJ
and CCVJ in heat-stressed formulations (Fig. 4A,C). Bis-
ANS appeared to be the most sensitive dye to detect heat-
induced changes in polysorbate-free formulations, indicated
by the stronger intensity increase (9.8-fold versus 3.8-fold for
DCVJ and 1.3-fold for CCVJ, respectively) and blue shift of
about 15 nm for the formulation stressed for 10 minutes at 75°
C (Fig. 4E), as compared to the molecular rotors (Fig. 4A,C).

Table I. Average Lifetimes (tauave) Derived from the Time-Resolved
Fluorescence Decays for 5μM DCVJ (Exc. 450 nm, Em>495 nm) and

5μM Bis-ANS (Exc. 375 nm, Em > 495 nm)

Sample tauave for DCVJa [ns]
tauave for
Bis-ANSa [ns]

Buffer, 0% PS 0.19 0.46
NS, 0% PS 0.24 1.49
10 min 80°C, 0% PS 1.23 8.38
Buffer, 0.02% PS 0.15 5.59
NS, 0.02% PS 0.16 5.56
10 min 80°C, 0.02% PS 0.99 6.49

a the standard deviations (n=3) were less than 0.05 ns for DCVJ and
less than 0.1 ns for Bis-ANS
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Fig. 4. Steady-state fluorescence spectra (average of n=3) of fluorescent dyes with placebo, non-stressed IgG (NS), IgG heat-stressed for 10 min
at 75°C and 10 min at 80°C in the absence (A,C,E) and presence of 0.02% polysorbate 20 (PS20) (B,D,F). 5µM dye was used: DCVJ (A,B),
CCVJ (C,D) and Bis-ANS (E,F). The relative standard deviations of the maximum intensity were <1% for placebo, <3% for non-stressed IgG
and 10 min 75°C stressed IgG and <5% for 10 min 80°C stressed IgG.
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With DCVJ and CCVJ, it was possible to distinguish the
polysorbate-containing formulations stressed for 10 minutes
75°C and 80°C from the non-stressed IgG and placebo
control (Fig. 4B,D). Bis-ANS, on the other hand, was found
to be less suitable for the characterization of polysorbate-
containing formulations, due to the high background fluo-
rescence of the dye in polysorbate-containing placebo and
unstressed IgG formulations, which partly (for the 80°C
stressed sample) or completely (for the 75°C stressed
formulation) impeded the detection of changes in the heat-
stressed formulations (Fig. 4B). The same accounts for ANS
and Nile Red (data not shown).

HP-SEC with Online CCVJ and Bis-ANS Fluorescence
Detection

Non-stressed, heat-stressed IgG (10 min 75°C and 80°C)
and placebo without and with 0.02% polysorbate 20 or 80
were analyzed by HP-SEC using UV detection at 280 nm
(Fig. 5) and fluorescent dye detection, using either 2.5μM Bis-
ANS (excitation 385 nm, bandwidth 18 nm, emission 490 nm,
bandwidth 40 nm) or 5μM CCVJ (excitation 435 nm, emission
500 nm, bandwidths 18 nm) in the mobile phase (Fig. 6). From
the molecular rotors, CCVJ was chosen because the solubility
in water is better than the one of DCVJ, because one of the
nitrile functions is replaced by a carboxylic acid group (24)
(Fig. 2). The higher sensitivity of Bis-ANS compared to CCVJ
detection is in part due to the relatively higher fluorescence
intensity of Bis-ANS (compare also Fig. 3 and 4) and in part
due to the experimental settings. The larger Stokes’ shift of
the emission maximum allows for working with a larger
monochromator bandwidth for Bis-ANS. To avoid interfer-
ence from scattered light during CCVJ detection, a narrower
bandwidth of 18 nm had to be chosen. Moreover, the
sensitivity of the PMT detector is lower at 500 nm than
around 490 nm.

A major concern with fluorescent dyes for aggregate
characterization is that they might have an effect on the
aggregation level of the sample. It has been described in the
literature that fluorescent dyes can both promote or inhibit
protein aggregation (34–37). However, this is mainly problem-
atic when the dyes are present already during the aggregation
process, where they can interact with exposed hydrophobic
parts of the protein under stress conditions. In our analytical
set-up, the dyes were added after the applied stress prior to
analysis and did not induce detectible changes in steady-state
fluorescence until at least two hours after addition of the dyes
(data not shown). Also, in HP-SEC analysis with dye
detection, the formulations have already undergone aggrega-
tion prior to the contact with the dye. The comparable UV
signals at 280 nm, with respect to total area under the curve and
overlapping profiles of the chromatograms obtained for the
mobile phases without dye and with Bis-ANS or CCVJ (data
not shown), strongly indicate that, for our samples, the dyes
added to the eluent did not affect the aggregation profile.

From theUV signal at 280 nm, the aggregate content of the
formulations was quantified, as summarized in Table II. Aggre-
gation was more severe after 10 minutes heating at 80°C (78 to
83% aggregates) as compared to 10 minutes at 75°C (10 to 13%
aggregates). A higher aggregate content was observed in the
formulations with polysorbate than in the polysorbate-free

Fig. 5. Representative HP-SEC chromatograms of UV detection at
280 nmof placebo, non-stressed (NS) IgG and heat-stressed IgG (10min
75°C or 10 min 80°C) for polysorbate-free formulations (A), formula-
tions with 0.02% polysorbate 20 (PS20) (B) and 0.02% polysorbate 80
(PS80) (C).
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Fig. 6. Representative HP-SEC chromatograms of Bis-ANS detection (A,C,E) and CCVJ detection (B,D,E) of placebo, non-stressed (NS) IgG
and heat-stressed IgG (10 min 75°C or 10 min 80°C) for polysorbate-free formulations (A,B), formulations with 0.02% polysorbate 20 (PS20)
(C,D) and 0.02% polysorbate 80 (PS80) (E,F).
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formulations. These tendencies can be found back in the dye
detection with qualitatively comparable results for Bis-ANS
(Fig. 6A,C,E) and CCVJ (Fig. 6B,D,F). Both dyes exhibited
high fluorescence intensities for aggregates eluting between 12
and 19 minutes, with higher intensities for the larger aggregates.
Furthermore, a slightly increased intensity for the monomer in
heat-stressed preparations was found as compared to the non-
stressed monomer, suggesting the presence of conformationally
altered monomers. The corresponding placebo formulations
exhibited no fluorescence, with the exception of the formulation
buffer with 0.02% polysorbate 80 in Bis-ANS detection. The
disturbance of Bis-ANS detection by polysorbate 80 was
obvious by an intense fluorescence signal in the fraction eluting
between 22 and 25 minutes (Fig. 6E). In the corresponding UV
traces at 280 nm, no signal of polysorbate 80 was observed
(Fig. 5C). Nevertheless, dye detection with Bis-ANS inHP-SEC
was feasible for the formulations without polysorbate and with
polysorbate 20 (Fig. 6A,C). CCVJ detection (Fig. 6B,D,F) was
not disturbed at all by polysorbate present in the formulations
and hence found to be suitable to analyze formulations
containing polysorbate 80.

Generally speaking, online fluorescent dye detection in
HP-SEC provides qualitative information on the properties of
aggregates and monomer present within a formulation.
Although in principle for a defined aggregate (ensemble),
the dye fluorescence intensity can be used for quantitative
purposes (unpublished results), a straightforward quantifica-
tion of the aggregate content based on the dye signal is up to
now not possible. The reason for this is that the fluorescence
intensity not only depends on the amount of aggregates, but
also on the properties of the aggregates or other dye-binding
species (e.g. monomers, fragments) with respect to polarity
(Bis-ANS) or rigidity (CCVJ) of the microenvironment. For
quantitative purposes, the UV signal at 280 nm can be
employed. Compared to steady-state fluorescence, online
dye detection has the advantage of allowing an assignment
of the increased fluorescence to certain protein species.

Case Study: Use of CCVJ to Analyze Aggregation
in Enbrel®50 mg, MabThera®100 mg and Humira®40 mg

After having shown that molecular rotors are suitable to
detect aggregation in polysorbate-containing IgG formulations,
we aimed to use CCVJ for the analysis of commercial protein

therapeutics. Possible concerns about using CCVJ for these
preparations may be the higher protein concentrations of 10 to
50 mg/ml and the more complex compositions with respect to
excipients. For the study, we selected Enbrel®50 mg, which is
polysorbate-free but contains a high concentration of 50 mg/ml
etanercept, and the polysorbate 80-containing monoclonal
antibody preparationsMabThera®100mg (10 mg/ml rituximab
and 0.07% (w/v) polysorbate 80), as well as Humira®40 mg
(50 mg/ml adalimumab and 0.1% (w/v) polysorbate 80). The
products were stressed for 10 minutes at different temperatures
below the aggregation temperature (determined by UV spec-
troscopy—data not shown) to obtain aggregate-containing, but
optically clear, solutions. HP-SEC confirmed the formation of
aggregates by the thermal stressing of the commercial prepa-
ration as shown in Fig. 7. The absolute quantity of aggregates
obvious from the UV detection at 280 nm in these high
concentrated formulations might be impacted by the dilution
effect observed during the HP-SEC analysis (38), but this was
not further studied.

In Fig. 8, the analysis of the commercial products with
5μM CCVJ in steady-state fluorescence spectroscopy is
shown. The emission spectrum of CCVJ added to non-
stressed Enbrel®50 mg is blue shifted by about 7 nm and of
about 2-fold higher intensity as compared to the placebo with
an emission maximum of 500 nm (Fig. 8A). The blue shift by
7 nm points at higher hydrophobicity of the non-stressed
formulation as compared to the placebo. This may be due to
hydrophobic parts present on the native etanercept molecule
or on the small amount of aggregates present in the non-
stressed preparation (compare Fig. 7A). HP-SEC with CCVJ
dye detection revealed that the etanercept monomer is
interacting with CCVJ, obvious by the peak eluting at about
18 minutes (Fig. 7B). After stressing Enbrel®50 mg for
10 minutes at 70°C a clear, 4-fold increase in fluorescence
intensity accompanied by a blue shift of 15 nm was measured
in steady-state fluorescence (Fig. 8A). This can be attributed
to the formation of aggregates, which provide a rigid environ-
ment for CCVJ (intensity increase) and exhibit a higher
hydrophobicity than the non-stressed preparation (blue shift).
The interaction of aggregates with CCVJ was also apparent in
HP-SEC with CCVJ detection (Fig. 7B).

For the polysorbate 80-containing products MabThera®
100 mg (Fig. 8B) and Humira®40 mg (Fig. 8C), the emission
maxima of the placebos and the non-stressed preparations are

Table II. HP-SEC Results Calculated from UVAbsorbance at 280 nm for the IgG Formulations of 1.0 mg/ml IgG in 100 mM Phosphate pH 7.2
Without Polysorbate (PS) or With 0.02% Polysorbate 20 (PS20) or 80 (PS80)a

Sample Aggregates [%] Monomer [%] Fragments [%] Relative recovery [%]

NS, 0% PS 0.7 ± 0.1 98.8 ± 0.1 0.5 ± 0.1 100.0
10 min 75°C, 0% PS 10.4 ± 0.4 89.0 ± 0.2 0.7 ± 0.2 95.3 ± 1.5
10 min 80°C, 0% PS 78.6 ± 1.1 20.4 ± 1.0 1.0± 0.1 88.1 ± 2.4
NS, 0.02% PS20 0.7 ± 0.0 98.8 ± 0.1 0.5 ± 0.1 100.0
10 min 75°C, 0.02% PS20 10.7 ± 0.3 88.7 ± 0.2 0.7 ± 0.2 93.2 ± 0.1
10 min 80°C, 0.02% PS20 85.1 ± 1.4 13.8 ± 1.1 1.1 ± 0.3 92.5 ± 3.9
NS, 0.02% PS80 0.6 ± 0.1 98.8 ± 0.2 0.5 ± 0.2 100.0
10 min 75°C, 0.02% PS80 13.6 ± 0.3 85.7 ± 0.2 0.7 ± 0.2 94.8 ± 0.1
10 min 80°C, 0.02% PS80 82.0 ± 1.3 16.8 ± 1.0 1.2 ± 0.3 93.2 ± 0.3

a n=3, results are presented as average ± standard deviation
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located at 495 nm for MabThera®100 mg and 492 nm for
Humira®40 mg. The blue shift of the emission as compared
to Enbrel®50 mg placebo (500 nm) can be attributed to the
more hydrophobic environment because of polysorbate 80
present in these formulations. The fluorescence intensity of

the non-stressed preparations was 1.5-fold higher for
MabThera®100 mg and 2.4-fold higher for Humira®40 mg
than for the corresponding placebo, whereas the emission
maximum was unchanged. Comparable to Enbrel®50 mg, an
interaction of CCVJ with the monomer was measured in HP-

Fig. 7. Representative HP-SEC with UV detection at 280 nm (A,C,E) and CCVJ dye detection, Exc. 435 nm, Em. 500 nm (B,D,F) of
Enbrel®50 mg (50 mg/ml etanercept) (A,B), MabThera®100 mg (10 mg/ml rituximab) (C,D) and Humira®40 mg (50 mg/ml adalimumab) (E,
F). Each commercial preparation was analyzed non-stressed (NS) and after heat stress for 10 minutes at the temperatures indicated in the figure
legend. Insets represent a zoom into the chromatograms of the UV detection at 280 nm.
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SEC with CCVJ detection for both MabThera®100 mg
(Fig. 7D) and Humira®40 mg (Fig. 7F).

An increase in CCVJ fluorescence and a blue shift was
monitored in steady-state fluorescence spectroscopy (Fig. 8B,
C) for the heat-stressed products of MabThera®100 mg and
Humira®40 mg, which is in agreement with the increase in
aggregation measured by HP-SEC with UV (Fig. 7C,E) and
CCVJ detection (Fig. 7D,F). Overall, it is possible to detect
changes in the highly concentrated commercial preparation
by the molecular rotor CCVJ, even at relatively high protein
and polysorbate 80 concentrations.

CONCLUSIONS

We have proven that the fluorescent molecular rotors
DCVJ and CCVJ are valuable dyes to detect changes in
polysorbate-containing thermally-stressed, aggregated IgG for-
mulations in steady-state fluorescence spectroscopy. As their
fluorescence properties are hardly affected by polysorbate at
concentrations typically used in pharmaceutical protein for-
mulations, these dyes are superior over the polarity-sensitive
dyes (Bis-)ANS and Nile Red for the characterization of
polysorbate-containing protein formulations. Moreover, CCVJ
can be used within the mobile phase of the HP-SEC for the
analysis of polysorbate-containing samples using online fluo-
rescence detection. The suitability of themolecular rotor CCVJ
was also shown for the analysis of highly-concentrated, poly-
sorbate-containing commercial formulations of therapeutic
proteins. Our findings open up new possible applications of
fluorescent molecular rotors, specifically DCVJ and CCVJ, in
(high-throughput) formulation screening and stability testing of
protein formulations containing polysorbate as stabilizer.
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